Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 2 de 2
Фильтр
Добавить фильтры

база данных
Год
Годовой диапазон
1.
Int J Mol Sci ; 23(18)2022 Sep 07.
Статья в английский | MEDLINE | ID: covidwho-2010122

Реферат

Inhibition of inflammatory responses from the spike glycoprotein of SARS-CoV-2 (Spike) by targeting NLRP3 inflammasome has recently been developed as an alternative form of supportive therapy besides the traditional anti-viral approaches. Clerodendrum petasites S. Moore (C. petasites) is a Thai traditional medicinal plant possessing antipyretic and anti-inflammatory activities. In this study, C. petasites ethanolic root extract (CpEE) underwent solvent-partitioned extraction to obtain the ethyl acetate fraction of C. petasites (CpEA). Subsequently, C. petasites extracts were determined for the flavonoid contents and anti-inflammatory properties against spike induction in the A549 lung cells. According to the HPLC results, CpEA significantly contained higher amounts of hesperidin and hesperetin flavonoids than CpEE (p < 0.05). A549 cells were then pre-treated with either C. petasites extracts or its active flavonoids and were primed with 100 ng/mL of spike S1 subunit (Spike S1) and determined for the anti-inflammatory properties. The results indicate that CpEA (compared with CpEE) and hesperetin (compared with hesperidin) exhibited greater anti-inflammatory properties upon Spike S1 induction through a significant reduction in IL-6, IL-1ß, and IL-18 cytokine releases in A549 cells culture supernatant (p < 0.05). Additionally, CpEA and hesperetin significantly inhibited the Spike S1-induced inflammatory gene expressions (NLRP3, IL-1ß, and IL-18, p < 0.05). Mechanistically, CpEA and hesperetin attenuated inflammasome machinery protein expressions (NLRP3, ASC, and Caspase-1), as well as inactivated the Akt/MAPK/AP-1 pathway. Overall, our findings could provide scientific-based evidence to support the use of C. petasites and hesperetin in the development of supportive therapies for the prevention of COVID-19-related chronic inflammation.


Тема - темы
Antipyretics , COVID-19 Drug Treatment , Clerodendrum , Hesperidin , Petasites , A549 Cells , Anti-Inflammatory Agents/pharmacology , Caspase 1/metabolism , Clerodendrum/metabolism , Cytokines/metabolism , Flavonoids/pharmacology , Hesperidin/pharmacology , Humans , Inflammasomes/metabolism , Interleukin-18 , Interleukin-6 , Lung/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt , SARS-CoV-2 , Solvents , Spike Glycoprotein, Coronavirus , Transcription Factor AP-1
2.
Viruses ; 14(1)2022 01 07.
Статья в английский | MEDLINE | ID: covidwho-1614008

Реферат

The coronavirus disease 2019 (COVID-19), caused by a novel coronavirus (SARS-CoV-2), has spread worldwide, affecting over 250 million people and resulting in over five million deaths. Antivirals that are effective are still limited. The antiviral activities of the Petasites hybdridus CO2 extract Ze 339 were previously reported. Thus, to assess the anti-SARS-CoV-2 activity of Ze 339 as well as isopetasin and neopetasin as major active compounds, a CPE and plaque reduction assay in Vero E6 cells was used for viral output. Antiviral effects were tested using the original virus (Wuhan) and the Delta variant of SARS-CoV-2. The antiviral drug remdesivir was used as control. Pre-treatment with Ze 339 in SARS-CoV-2-infected Vero E6 cells with either virus variant significantly inhibited virus replication with IC50 values of 0.10 and 0.40 µg/mL, respectively. The IC50 values obtained for isopetasin ranged between 0.37 and 0.88 µM for both virus variants, and that of remdesivir ranged between 1.53 and 2.37 µM. In conclusion, Ze 339 as well as the petasins potently inhibited SARS-CoV-2 replication in vitro of the Wuhan and Delta variants. Since time is of essence in finding effective treatments, clinical studies will have to demonstrate if Ze339 can become a therapeutic option to treat SARS-CoV-2 infections.


Тема - темы
Antiviral Agents/pharmacology , Plant Extracts/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Antiviral Agents/chemistry , Carbon Dioxide/chemistry , Cell Survival/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Genetic Variation , Petasites/chemistry , Plant Extracts/chemistry , SARS-CoV-2/genetics , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Vero Cells
Критерии поиска